Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.
نویسندگان
چکیده
Focused ultrasound (FUS) in combination with microbubbles has been shown capable of delivering large molecules to the brain parenchyma through opening of the blood-brain barrier (BBB). However, the mechanism behind the opening remains unknown. To investigate the pressure threshold for inertial cavitation of preformed microbubbles during sonication, passive cavitation detection in conjunction with B-mode imaging was used. A cerebral vessel was simulated by generating a cylindrical hole of 610 microm in diameter inside a polyacrylamide gel and saturating its volume with microbubbles. Definity microbubbles (Mean diameter range: 1.1-3.3 microm, Lantheus Medical Imaging, N. Billerica, MA, USA) were injected prior to sonication (frequency: 1.525 MHz; pulse length: 100 cycles; PRF: 10 Hz; sonication duration: 2 s) through an excised mouse skull. The acoustic emissions due to the cavitation response were passively detected using a cylindrically focused hydrophone, confocal with the FUS transducer and a linear-array transducer with the field of view perpendicular to the FUS beam. The broadband spectral response acquired at the passive cavitation detector (PCD) and the B-mode images identified the occurrence and location of the inertial cavitation, respectively. Findings indicated that the peak-rarefactional pressure threshold was approximately equal to 0.45 MPa, with or without the skull present. Mouse skulls did not affect the threshold of inertial cavitation but resulted in a lower inertial cavitation dose. The broadband response could be captured through the murine skull, so the same PCD set-up can be used in future in vivo applications.
منابع مشابه
In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.
The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the...
متن کاملBlood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects
Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...
متن کاملThe mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice.
The activation of bubbles by an acoustic field has been shown to temporarily open the blood-brain barrier (BBB), but the trigger cause responsible for the physiological effects involved in the process of BBB opening remains unknown. Here, the trigger cause (i.e., physical mechanism) of the focused ultrasound-induced BBB opening with monodispersed microbubbles is identified. Sixty-seven mice wer...
متن کامل“Non-thermal” ablation using focused ultrasound and an ultrasound contrast agent
Background/introduction The combination of focused ultrasound and an intravenously-injected microbubble ultrasound contrast agent offers the ability to reduce the power needed to ablate tissue, which is particularly important for targets in the brain since it can eliminate skull heating. When applied at a low duty cycle so that bulk tissue heating does not occur, the mechanical effects induced ...
متن کاملEvaluating the Effects of Dual Frequency Sonication Parameters on Acoustic Cavitation by Chemical Dosimeter Using Iodide
Background and Aims: Production of acoustic cavitation by sonication has been recently recommended as a targeted treatment. The experimental results from studies indicate that the activity of cavitation generated by bi- or multi-frequency ultrasound irradiation is higher than that caused by single frequency irradiation. In this study, effects dual (1 MHz and 40 kHz) and single frequency soni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasound in medicine & biology
دوره 36 5 شماره
صفحات -
تاریخ انتشار 2010